The mountains of the Cameroon Volcanic Line form an important region of endemism for amphibians (Amiet, 1971a), with many new species described from this area during past decades (e.g. Amiet, 1971b, 1982; Loumont and Kobel, 1991; Herrmann et al., 2004; Blackburn, 2008a, 2010; Zimkus and Gvoždík, 2013). A new species of squeaker frog, Arthroleptis palava Blackburn, Gvoždík, Leaché, 2010 (Arthroleptidae) was one of them (Blackburn et al., 2010). The presence of a new species had been indicated since a specimen was collected on the Obudu Plateau in Nigeria in 1959, and later noted by Schiotz (1963) that this frog “seems to represent an undescribed species”. Later it was collected in the Bamenda Highlands (Mt. Oku region), Cameroon, again on the Obudu Plateau, and newly also on the Mambilla Plateau, Nigeria. The latter was stated as the type locality (Blackburn et al., 2010; Fig. 1a). No other locality has been reported for the species since its description. Arthroleptis palava had waited for its formal description for a long time probably due to its superficial morphological similarity to A. poecilonotus Peters, 1863, although phylogenetically it clusters within the A. variabilis clade (A. krokosua, A. perreti, A. variabilis; Blackburn, 2008b; Blackburn et al., 2010). This medium-sized species [snout–vent length (SVL) = 22.2 – 24.2 mm (males), 23.7–29.1 mm (females); Blackburn et al., 2010] is characterised by the colouration of its dorsum ranging from pale to medium brown with small dark brown markings, a dorsal midline stripe of pale cream colour is sometimes present, and the ventral colouration of the throat and anterior part of venter is typically grey with dark brown to blackish markings and sometimes with an indistinctive lighter midline. Morphological characters distinguishing A. palava from other Arthroleptis species in the region are described in Blackburn et al. (2010). The advertisement call of this species has not yet been described.

Arthroleptis palava inhabits mainly submontane zone (1000 – 1900 m) and seems to be confined to rather open, often human-modified habitats (Blackburn et al., 2010). In this short note, we present new records of A. palava from two distant mountain ranges within the Adamawa Plateau: Gotel Mountains on the Cameroon–Nigeria border, and Tchabal Mbabo Mountains in Cameroon (Fig. 1a). We also provide a new maximum altitudinal record from the Bamenda Highlands, Cameroon. For the latter, one male, one female and one juvenile were collected near a previously known locality Kedjom Keku Village (= Big Babanki), North-West Region, but in a higher elevation of 2120 m a.s.l. near the station “Mendong Buo” (6.0902°N 10.2950°E) on 10.XI.2009. All specimens were found in human-modified montane grassland with nearby forest patches (< 50 m distant), and are stored in the National Museum in Prague (NMP6V). The male (NMP6V 74609/1) has hypertrophied third fingers, which possibly indicate

1 Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
2 Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
3 Laboratory for Biodiversity and Conservation Biology, Department of Zoology and Animal Physiology, University of Buea, Buea, Cameroon
4 Ore Processing Laboratory, Institute of Geological and Mining Research, Yaoundé, Cameroon
5 Department of Zoology, National Museum, Prague, Czech Republic
* Corresponding author. E-mail: vaclav.gvozdik@ivb.cz
Figure 1. New records of *Arthroleptis palava* from the Cameroon Volcanic Line. Map (a) shows the previously known distribution range following IUCN (2013) in orange, black star indicates type locality, and red points represent new localities in the Gotel Mts. (G) and Tchabal Mbab (M) and the locality representing the new altitudinal maximum in the Bamenda Highlands (B). Female (b-c) from the Bamenda Highlands in life (NMP6V 74609/3), and a subadult individual (d-e) from Tchabal Mbab (ZFMK 75727).
maturity, although body size is smaller with 17.9 mm SVL. The female (Fig. 1b-c; NMP6V 74609/3; SVL = 21.9 mm) is probably subadult as it contains immature eggs, and the juvenile (NMP6V 74609/2) has 10.2 mm SVL. Genetically, when comparing the standard 16S mtDNA gene fragment, all three specimens bear the same or a very similar haplotype (0.0–0.2% distance; GenBank Nos. MG971214–MG971216) as previously published (Blackburn et al., 2010). This is the first record of *A. palava* in the montane zone above 2000 m a.s.l. The geographical range extension to the east and north-east is based on three specimens. A tiny juvenile was collected on Mount Gangirwal in the Gotel Mountains, Cameroon – Nigeria border, on 16.VI.2016 (7.0305°N 11.6977°E; 1890 m a.s.l.; field code CM16_032; SVL = 6.2 mm). This specimen was also collected in montane grassland near a forest, and the 16S haplotype is 0.6% distant from the haplotypes of the specimens from the Bamenda Highlands (GenBank No. MG971217). Further north-eastward is the Tchabal Mbabo massif, where we failed to find this species during a short survey (4 days and nights) in June 2016. However, from this massif, we found a misidentified specimen of *A. palava* mixed upon a series of museum (ZFMK) specimens of *Phrynobatrachus* sp. collected at the locality 5 km NEE of Founygo (or Fungoi; 7.2518°N 12.0597°E, 2060 m a.s.l.) by a German expedition on 4.II.2000. The habitat was a mosaic of montane grasslands and forests on the ridge of Tchabal Mbabo (Herrmann et al., 2007). The specimen, probably a subadult female (Fig. 1d-e; ZFMK 75727; SVL = 17.0 mm) has the typical ventral colour pattern of *A. palava* in accordance with other morphological characters. An additional evidence for the presence of this species on Tchabal Mbabo might be provided by the photo of a specimen of “*Arthroleptis* sp.” (Herrmann et al., 2007: 31, Fig. 5; ZFMK 75704) taken at the locality Hunter’s Hut on the northern slope of the massif at a submontane altitude (7.3135°N, 12.0472°E; 1282 m a.s.l.). The site was characterised as a savanna – gallery forest mosaic, and the specimen was collected near a small creek in a gallery forest on 31.I.2000 (Herrmann et al., 2007). This subadult specimen most likely also represents *A. palava* as is indicated by the dark motting on anterior lower body side.

This contribution provides the evidence that the geographic range of *A. palava* is larger towards the east and north-east reaching at least the Gotel Mts. and Tchabal Mbabo regions, and that the altitudinal range might reach over 2100 m a.s.l. However, a dramatic population decline of several anuran genera (not yet clear for *Arthroleptis*) has recently been documented in the Cameroon mountains (Hirschfeld et al., 2016; Doherty-Bone and Gvoždík, 2017). As we found the only specimen of *A. palava* in the Gotel Mts. and not a single specimen on Tchabal Mbabo during short surveys in 2016 (8 days and nights), it may suggest a population decline. Nevertheless, it must be further studied, if the genus *Arthroleptis*, including *A. palava*, is also affected by the decline or not.

Acknowledgments. The authors would like to thank the Cameroon Ministries of Forestry and Wildlife (MINFOF) and of Scientific Research and Innovation (MINRESI) for providing necessary permits for conducting research, and the local authorities for permitting our access to their areas. We are thankful to the Zoological Research Museum Alexander Koenig (ZFMK) in Bonn for loaning the material from Tchabal Mbabo, and Tadeáš Necas for help with photography. The research was supported by the Czech Science Foundation, Grant Number 15-13415Y, and the Ministry of Culture of the Czech Republic (DKRVO 2018/14, National Museum, 00023272).

References

